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The problems of nonlinear scattering of acoustic waves by a sphere have been considered
in references [1, 2], where the processes of nonlinear scattering of sound waves by a
pulsating sphere were investigated. A related problem of interest is that of the nonlinear
interactions of acoustic waves scattered by a sphere. However, for obtaining full
representation of the wave processes happening in scattering by a sphere, one needs a
detailed investigation of a second field having four frequency components. The secondary
acoustic fields of waves of difference frequency and second harmonics of the initial
high-frequency pumping waves have been investigated in references [3, 4]. By a method of
successive approximation, the solution of an inhomogeneous wave equation of
summarized frequency which includes the processes of nonlinear interaction of the incident
and scattered initial pumping waves has been obtained. The solution has an aspect similar
to that of the solution for a wave of difference frequency [3]. After integration on angular
coordinates the solution for the acoustic pressure of a wave of summarized frequency
becomes
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Here, C+ =12 e−ik+rov1v2r0c10c20(v1 +v2)2/k2
+c4

0r sin 2u, k5 = k+ cos u, k6 = k+ sin u,
k+ =(v1 +v2)/c0 (the wave number of a summarized wave), v1, v2, are the pumping
frequencies, jl (knr) is the spherical Bessel function of the lth order, D(n)

m and 8(n)
m are the

modulus and phase of a spherical Hankel function of the second kind h(2)
m (knr), Pl (cos u),

Pm (cos u) are Legendre polynomials, A(n)
m are coefficients determined from the boundary

conditions for a rigid sphere (boundary condition of Neumann), cn0 is the amplitude of
a velocity potential function, o is a nonlinear parameter, r0 is the density of the undisturbed
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medium, a is radius of the sphere, and d is the radius of the area of nonlinear interaction
of pumping waves around the spherical scatterer.

Despite the analogy of the expressions to those of the scattering of a high-frequency,
those for the summarized wave have a geometric character, as against a wave of difference
frequency, which encompasses Rayleigh’s and resonance areas. Thus it is necessary to note
that the first term of expression (1), P(2)

+1, corresponds to the part of the common acoustic
pressure of a secondary field of a wave of summarized frequency, which is generated in
a spherical stratum of the region of nonlinear interaction between the incident plane
pumping waves of frequencies v1 and v2; the second term, P(2)

+2, describes the interaction

Figure 1. The diagrams of scattering of terms of common acoustic pressure of a wave of summarized frequency
P(2)

+1, P(2)
+2, P(2)

+3, and P(2)
+4 by a sphere with a diameter of 11 mm on a distance d=10 mm with f1 =986·6 kHz,

f2 =1030 kHz, F+ =2016·6 kHz (k+a=46·5).
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Figure 2. Calculated (1) and experimental (2) diagrams of scattering of common acoustic pressure of a wave
of summarized frequency P(2)

+ by a sphere with a diameter of 11 mm at a distance d=20 cm with (a)
f1 =986·6 kHz, f2 =1030 kHz, F+ =2016·6 kHz (k+a=46·5); (b) f1 =943·2 kHz, f2 =1030 kHz,
F+ =1973·2 kHz (k+a=45·5).

of an incident plane wave of frequency v1 and a scattered spherical wave of frequency v2;
the third term, P(2)

+3, corresponds to the interaction of an incident plane wave of frequency
v2 with a scattered spherical wave of frequency v1; the fourth term, P(2)

+4, to the interaction
of scattered spherical waves with frequencies v1 and v2 in a spherical stratum of the
medium around the scatterer.

Thus the common acoustic pressure of a secondary field of a wave of summarized
frequency represents a population of acoustic pressures of all spatial components of a
second field with different amplitude and phase relations.

After a final integration on the coordinate r of expression (1), one obtains high frequency
asymptotic expressions for all four spatial components of the common acoustic pressure
of the second field of a wave of summarized frequency. These expressions for the scattering
of components P(2)

+1, P(2)
+2, P(2)

+3, P(2)
+4, have been evaluated and the results are shown in

Figure 1. The calculations were for a sphere with a diameter of 11 mm, k+a=46·5, at a
distance d=10 mm. Figure 1 shows that the first term P(2)

+1 has dominant levels of
scattering in both inverse and direct directions, u=0° and 180°; the scattering of the
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second and third terms P(2)
+2 and P(2)

+3 has a lower level of scattering in the direct direction
u=0° and the scattering of the fourth term P(2)

+4 has a unique maximum in the opposite
direction. Note also that the second and third terms, P(2)

+2 and P(2)
+3 have lower levels of

acoustic pressure because of destructive interaction of the initial high frequency waves.
In Figure 2 the compared, calculated and experimental results for the scattering of the

common acoustic pressure of a wave of summarized frequency P(2)
+ are shown (the

experiments were carried out in water with a steel sphere of diamter 11 mm). The figure
shows that although the agreement between calculated and experimental results is
satisfactory, the calculated intermediate maxima are somewhat smaller than the
experimental ones. This is because of the transient character of the experimental excitation,
casuing the duration of the interaction of counter pumping waves to be limited in time.
One can note also that with increase in the Helmholtz number of the sphere the levels of
the intermediate maxima undergo insignificant changes. This is because, although the
volume of the region of nonlinear interaction increases, the amplitudes of the interacting
waves become correspondingly weaker at increased radial distances.
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